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Abstract 

Three new families of minimal balance surfaces have 
been derived. For this a new kind of surface patch, 
i.e. branched catenoid, has been used. A concave 
polygon with one point of self-contact and a convex 
polygon are the two generating circuits of such a 
minimal balance surface. 

1. Introduction 

A minimal surface is a surface in R 3 with mean 
curvature zero at each of its points. A 3-periodic 
minimal surface without self-intersection that sub- 
divides R a into two congruent regions (labyrinths) is 
called a minimal balance surface (cf. Fischer & Koch, 
1987; Koch & Fischer, 1988). For each such minimal 
balance surface there exists a group-subgroup pair 
G - H  of space groups with index 2 which uniquely 
describes the symmetry of that surface: G character- 
izes its full group of isometrics whereas H consists 
of all those symmetry operations which do not inter- 
change the two sides of the surface or the two 
labyrinths. 

If s is a symmetry operation of G but not of H 
then all fixed points of s necessarily have to lie on 
each surface with symmetry G-H. To avoid self- 
intersection of the surface, s must not be a mirror 
reflection or a fourfold or sixfold rotation. As a con- 
sequence, pairs G - H  with G including additional 
mirror planes or fourfold or sixfold rotation axes are 
incompatible with minimal balance surfaces. 

If, on the other hand, s is a twofold rotation the 
corresponding entire rotation axis has to lie within 
each minimal balance surface with symmetry G-H. 
This property enables the straightforward derivation 
of certain kinds of minimal balance surfaces. Two 
kinds have already been derived completely (Fischer 
& Koch, 1987; Koch & Fischer, 1988): (1) all minimal 
balance surfaces that may be generated by skew cir- 
cuits of twofold axes that are disk-like spanned (15 
families); and (2) all minimal balance surfaces that 
may be generated by pairs of parallel flat congruent 
circuits of twofold axes that are catenoid-like spanned 
(seven families). Within the present paper three new 
families of minimal balance surfaces will be described 
that belong to a third kind. 
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2. Symmetry conditions for minimal balance surfaces 

There exist 1156 types of group-subgroup pairs of 
space groups G - H  with index 2 corresponding to the 
1156 types of 'proper' black-white space groups. 609 
of these types have been proved to be incompatible 
with (minimal) balance surfaces. For the other 547 
types the symmetry conditions have been tabulated 
which must be fulfilled by each minimal balance 
surface with that symmetry (Koch & Fischer, 1988, 
Table 1). In particular, the set of twofold axes from 
G which do not belong to H has been identified for 
each pair G-H. As group-subgroup pairs of different 
types may define analogous such sets one has to 
distinguish 52 cases only. The assignment of the 
space-group pairs to these cases has also been done 
within the table mentioned above. 

3. Minimal balance surfaces built up from 
branched catenoids 

In the following, three new families of minimal bal- 
ance surfaces will be described that can be derived 
from the sets of twofold axes belonging to cases 31 
to 33 referred to in Table 1 of Koch & Fischer (1988). 
These sets of twofold axes disintegrate into parallel 
plane nets, but - in contrast to all cases discussed in 
previous papers - nets of two different kinds are 
stacked upon each other alternately. Detailed infor- 
mation on the three families of minimal surfaces is 
given in Table 1. 

Minimal balance surfaces BC 1 made up from threefold 
branched catenoids 

Case 31 refers to group-subgroup pairs of type 
P6322-P63 only. All symmetry operations from P6322 
that are not contained in P63 and have fixed points 
are twofold rotations with rotation axes parallel to 
the ab plane. The set of twofold axes defined by a 
certain pair P6322-P63 consists of all twofold axes 
.2. and ..2 of P6322. It disintegrates into flat parallel 
nets of two different kinds which are alternately 
arranged. The axes .2. form hexagonal nets of equi- 
lateral triangles that are oriented parallel to the co- 
ordinate axes. The rotation axes ..2 also build up 
hexagonal nets of equilateral triangles, but in different 
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orientation. As there exist two triangles per unit cell 
for nets of the first kind, but six triangles per unit 
cell for nets of the second kind, it is impossible to 
construct a minimal surface from catenoid-like sur- 
face patches in the same way as has been described 
for cases 22 to 28 (Koch & Fischer, 1988). Instead of 
that, however, more complicated surface patches may 
be formed, called branched catenoids. 

All catenoid-like surface patches described so far 
are bounded by two congruent flat convex polygons, 
their generating circuits (cf. Koch & Fischer, 1988). 
A branched catenoid, on the other hand, has two 
different generating circuits. It is bounded by a large 
convex polygon at one of its ends and by some smaller 
convex polygons with one common vertex at its other 
end. The smaller polygons are united to one large 
concave polygon with one point of self-contact. 

With symmetry P6322-P63 threefold branched 
catenoids may be constructed. Such a branched 
catenoid is bounded by one of the large triangles at 
one end and by three of the small triangles at the 
other end (Fig. 1). The small triangles meet in a 
common vertex which is located directly above or 
below the centre of the large triangle. 

The minimal balance surfaces constructed from 
such threefold branched catenoids are designated 
BC1 (cf. Table 1). The generating symmetry P6322- 
P63 of these surfaces coincides with their inherent 
symmetry, so that their generating linear nets are also 
their linear skeletal nets (cf. Schoen, 1970; Hyde & 
Andersson, 1984). According to the definition of the 
genus of an infinite periodic surface (cf. Schoen, 1970; 
Hyde, 1988) the genus of the BCI surfaces may be 
calculated as 9. 

Minimal balance surfaces BC2 made up from twofold 
branched catenoids 

Case 32 refers to four types of group-subgroup pairs: 
P42/nnm-P42nm, P4222-P42, P42/nbc-P42/n and 

P42/nbc-P42bc. A corresponding set of twofold axes 
consists, for example, of all twofold axes of P42/nnm 
parallel to the ab plane. Again this set disintegrates 
into parallel nets of two different kinds. The axes .2. 
form square nets oriented parallel to the" coordinate 
axes whereas the axes ..2 give rise to square nets in 
diagonal orientation. As there exist two diagonal 
squares and four parallel squares per unit cell two- 
fold branched catenoids may be constructed. They 
are bounded by one large diagonal square and by 
two small parallel squares with a common vertex 
(Fig. 2). 

The minimal balance surfaces made up from such 
twofold branched catenoids are designated BC2. 
Their inherent symmetry is P42/nnm-P42nm. The 
generating linear nets, as described above, are also 
the linear skeletal nets. The genus of the BC2 surfaces 
is 7. 

BC2 surfaces are also compatible with symmetry 
P4222-P42 because of the group-subgroup relation 
with respect to their inherent symmetry. They are 
incompatible, however, with symmetry P42/nbc- 
P42/n though analogous sets of twofold axes are 
defined by these pairs. The reason may be found in 
the roto-inversion centres ~, of P42/nbc and P42/n 
located in the middle of the large squares. These 4 
centres would give rise to two branched catenoids 
meeting in the same large square and, as a con- 
sequence, to self-intersecti0n of the surface within 
the twofold axes. In a subsequent paper a minimal 
surface with symmetry P42/nbc-P42/n will be 
described, the surface patches of which are of another 
type. 

Another situation occurs for P42/nbc-P42bc. The 
large squares of twofold axes are centred by roto- 
inversion centres ~,, the small squares by 1. Both kinds 
of inversion points have to lie on all minimal surfaces 
with symmetry P42/nbc-P42bc and, therefore, 
branched catenoids are incompatible with such space- 
group pairs. 

Fig. 1. Threefold branched catenoid, a surface patch of a minimal Fig. 2. Twofold branched catenoid, a surface patch of a minimal 
surface BC1 with symmetry P6322-P63. surface BC2 with symmetry P42/nnm-P42nm. 
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Minimal balance surfaces BC3 made up from fourfold 
branched catenoids 

Case 33 refers to space-group pairs 1422-14 only. 
All twofold axes of 1422 parallel to the ab plane form 
a corresponding set of twofold axes. Each such set 
disintegrates into parallel nets of two different kinds 
alternately arranged: triangular nets with angles 45, 
45, 90 ° formed by all axes .2. and by half the axes ..2 
and square nets in diagonal orientation made up by 
the other half of axes ..2. As the number of squares 
per unit cell is two and the number of triangles per 
unit cell is eight one may construct fourfold branched 
catenoids. Such a branched catenoid is bounded by 
a large square at one end and by four triangles sharing 
a common vertex (45 °) at the other end (Fig. 3). The 
common vertex is located directly above or below the 
centre of the corresponding square. 

The minimal balance surfaces consisting of four- 
fold branched catenoids are designated BC3. Their 
inherent symmetry is I422-14 and their linear skeletal 
nets coincide with the generating linear nets. In spite 
of the relatively complicated shape of their surface 
patches BC3 surfaces have genus 6. 

Common properties of BC surfaces 

The existence of minimal surface patches with the 
shape of branched catenoids has been proved by 
soap-film experiments for the corresponding three 
families of minimal surfaces. Like a catenoid-like 
surface patch (e.g. Schoen, 1970) a branched catenoid 
is stable only up to a certain distance of its two 
generating polygons. Consequently, infinite minimal 
surfaces built up from branched catenoids exist only 
within a certain range of the axial ratio: O < c / a <  
c/a(max.). The upper limits c/a(max.) are unknown. 

As in a minimal surface built up from catenoid-like 
surface patches, in a minimal surface constructed 
from branched catenoids each convex or concave 
generating circuit uniquely refers to one branched 

catenoid. Moreover, as has been described before for 
catenoid-like surface patches (Koch & Fischer, 1988), 
the branched catenoids belonging to neighbouring 
polygons of the same net point in diffe.rent directions. 

All branched catenoids that connect the same two 
nets and, therefore, belong to the same layer are in 
parallel orientation. Branched catenoids from neigh- 
bouring layers, however, are oriented differently. For 
all three families of minimal surfaces described here, 
four layers of branched catenoids in different orienta- 
tion exist within one c-translation period. Fig. 4 shows 
part of three layers for a BC2 surface. The relation 
between neighbouring layers is determined by the 
twofold axes forming the common net. 

Each set of twofold axes referring to one of the 
cases 31, 32 or 33 forms the generating linear net for 
four congruent BC surfaces. Select as the first gen- 
erating circuit any of the larger convex polygons 
formed within the set of twofold axes. Then the 
second concave generating circuit may belong either 
to the neighbouring net above or below. In both cases, 
there exist two further possibilities to choose the 
second generating circuit, so that the first circuit may 
be combined with a second one in four different ways 
giving rise to four different but congruent minimal 
surfaces. 

Consequently, each of the BC surfaces is com- 
plementary to, i.e. shows the same linear skeletal net 
as (cf. Schoen, 1970; Hyde & Andersson, 1984), three 
other surfaces which are congruent to the first one 
and which show the same symmetry G-H. Therefore, 
all four surfaces are equivalent in the intersection 
group of the Euclidean normalizers N~(G) and 
N~ (H) of G and H, respectively (cf. Fischer & Koch, 
1983; Koch & Fischer, 1987). 

This property, however, must not be generalized. 
Examples are known for congruent and complemen- 
tary minimal surfaces belonging to different pairs 
G - H  and being non-equivalent in NE(G) n NE(H),  
therefore. 

Fig. 3. Fourfold branched catenoid, a surface patch of a minimal Fig. 4. A model of a minimal surface BC2 with symmetry 
surface BC3 with symmetry I422-I4. P42/nnm-P42nm. 
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Table 1. Minimal balance surfaces built up from branched catenoids 

Minimal 
balance Group-subgroup 
surface pair Genus Point group 

BC 1 P6322- P63 9 3.. 3 + 9: 

BC 2 P42/nnm- P4 z n m 7 2. m m 4 + 8: 

BC3 I 4 2 2 - I 4  6 4.. 4 +  12: 

Surface patches Number of 
equivalent 

Generating circuits surfaces Transformations 
000,100, 2~  ~ ~7~ 1 1 0 / ~ a ,  00a, ~ ~a, 4 m(xyO); m(2x, x, z); 

2!!  10! ,Z! 2!!  11 l- !2! 2(2X, X,Z) 
3 3 4 ,  J ~ 4 ,  ~ 3 4 ,  3 3 4 ,  't 't4, 3 3 4  

2v4-tn!, vzn!!4, T,~oa, 0t ~/000, I00, 4 m(xy¼); m(Oyz); 

-',Io, 010, ooo, Ioo, ' '~ ~o, o½o 2(Oyl) 
lal all Y I 71 II m(xy~); m(Oyz); ~v~, v~a, ~0a, 0~ a/000, ~ 0 ,  4 __ 
olo, ooo, ½'o, ½oo, 0,, ' '- ,,,,, ~ ~v, 2(0y~) 

1T 100 0~0, 000, ~ ~0, 

Informat ion  on the properties of  BC surfaces is 
summarized  in Table 1. In each case, for one of  the 
four equivalent  surfaces a pair  of  generat ing circuits 
is described by its vertices. Generat ing circuits for 
the other three surfaces may be calculated with the 
aid of the symmetry  operat ions listed in the last 
column. 

Minimal surfaces of  the families BC1, BC2 and 
BC3 are not complementary  to surfaces of  other  
families described so far. In a subsequent  paper ,  
however,  a family of  minimal surfaces complemen-  
tary to the BC2 surfaces will be presented.  
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A b s t r a c t  

Eight new families of  minimal  balance surfaces are 
described. Their  surface patches belong to a new kind, 
called multiple catenoids.  The generat ing circuits of  
such a minimal  surface are two congruent  concave 
polygons with one point of  self-contact each. The 
new minimal balance surfaces are complementary  to 
other minimal balance surfaces which are built up 
from catenoid-like surface patches and have been 
known before.  

1. I n t r o d u c t i o n  

The symmetry  of  each minimal  balance surface can 
be described by a g roup - subg roup  pair  G = H of 
space groups with index 2, its inherent  symmetry.  The 
fixed points of  all symmetry  operat ions s with s ~ G 
but s ~ H are necessarily contained within the surface 

(Fischer & Koch,  1987). Most  of  the minimal balance 
surfaces described so far  have a l inear skeletal net, 
i.e. a set of  twofold axes defined by the corresponding 
space-group pair,  that  is embedded  within the surface 
(cf Schoen, 1970; Hyde & Andersson,  1984). Such a 
set of  twofold axes may be used to generate a minimal 
balance surface (cf  Fischer & Koch, 1987, 1989; Koch 
& Fischer, 1988). Then it is called a generat ing l inear 
net. 

As all sets of  twofold axes defined by space-group 
pairs with index 2 may be assigned to 52 cases (cf 
Koch & Fischer, 1988, Table 1) at most 52 types of  
generat ing l inear nets for minimal balance surfaces 
exist. Such a set of  twofold axes may be three- 
dimensional ly connected or not. Among  the discon- 
nected sets those ones stand out that disintegrate into 
parallel nets. 

If  all nets of  such a set are congruent  [cases 22 to 
30 in Table 1 of  Koch & Fischer (1988)] catenoid-like 
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